
Insecurity in Security Software

Maik Morgenstern
Andreas Marx
AV-Test GmbH

http://www.av-test.org

Virus Bulletin 2005 Conference presentation about “Insecurity in Security Software”
Copyright © 2005 AV-Test GmbH, Klewitzstr. 6, D-39112 Magdeburg, Germany
Phone: +49 391 6075460, Fax: +49 391 6075469, http://www.av-test.org



Table of content

The paradox
Types of security software
Comparison of CVE advisories
Examples of bugs and security vulnerabilities
Why bugs occur
Vulnerability lifecycle
What to do? (for users and developers)
Trustworthy computing security development
lifecycle



The paradox

All software products contain security
vulnerabilities (and other bugs)
AV software is widely deployed to protect
companies, organizations and home users
Every week, security flaws are discovered in
different AV products
The paradox: Security software is meant to
secure the system, but nowadays it
introduces new security holes.



Types of security software

Two different groups of security software:
– Home and business user software (widely used)

Firewalls
IPSec products
IDS/IPS
AV software…

– Tools used by researchers (small deployment)
IDA Pro
OllyDbg
Softice…



CVE advisories for vendor products
(2001 quarterly average = 100, Source: © The Yankee Group)

Microsoft / Security vendors / All vendors



Bugs leading to security vulnerabilities

A couple of examples from recent months (advisory titles):
– ISS and the Witty Worm
– Trend Micro VSAPI ARJ parsing
– McAfee Virus Library
– Symantec Multiple Products UPX Parsing Engine Heap Overflow
– Computer Associates Vet Antivirus Library Remote Heap Overflow
– Kaspersky AntiVirus "klif.sys" Privilege Escalation Vulnerability
– OllyDbg "INT3 AT" Format String Vulnerability
– DataRescue IDA Pro Dynamic Link Library Format String

Vulnerability
– Clam AntiVirus ClamAV Cabinet File Handling DoS Vulnerability



Bugs vs. security vulnerabilities

Some more examples from recent months:
– Trend Micro Virus Sig 594 causes systems to experience

high CPU utilization
– Windows NTFS Alternate Data Streams
– Archive Problems
– BitDefender bug bites GFI
– Panda AntiVirus deleting Tobit David communications

software
– Symantec Brightmail AntiSpam Static Database Password
– McAfee Internet Security Suite 2005 Insecure File

Permission



Why bugs occur: 3 main factors

Technical factors
– The underlying complexity of the task itself

Psychological factors
– The “mental models,” for example, that make it hard for

human beings to design and implement secure software
Real-world factors

– Economic and other social factors that work against security
quality

Source: Mark G. Graff, Kenneth R. van Wyk, ‘Secure Coding:
Principles & Practices’, O'Reilly, 2003



Vulnerability lifecycle

A never-ending story!
– Discover vulnerability
– Develop patch
– Get alert and install patch
– GOTO 1

Source: Mark G. Graff, Kenneth R. van Wyk, ‘Secure Coding:
Principles & Practices’, O'Reilly, 2003



What to do? (I)

Corporate users:
– Update your products frequently!
– … not only signature files in case of AV software,

but all components (e.g. engine, GUI)!
– Read publicly available information about newly

discovered flaws -- don‘t call the vendor first
– Try to shorten test intervals (months vs. weeks)

for security vulnerability related updates
– “Scan throughput” is not the only important thing!



What to do? (II)

Software developers:
– Check your old “known-working” code
– Check for updates of 3rd party software included

in your products
– File format “Sandbox” (protocol enforcement)
– Design your software to require minimal rights

whenever possible (Administrator or Root rights
are not required in all modules)

– Create easy and flexible update deployment
mechanisms



Trustworthy computing security
development lifecycle (I)

Four principles of secure development:
– Secure by design
– Secure by default
– Secure in deployment
– Communications

Source: Steve Lipner, Michael Howard, ‘The Trustworthy
Computing Security Development Lifecycle’, Microsoft 2005



Trustworthy computing security
development lifecycle (II)

Development lifecycle process phases:
– Requirement phase
– Design phase
– Implementation phase
– Verification phase
– Release phase
– Support and service phase
– … but what about education?

Source: Steve Lipner, Michael Howard, ‘The Trustworthy
Computing Security Development Lifecycle’, Microsoft 2005



Trustworthy computing security
development lifecycle (III)

Example (Microsoft‘s suggestions):
– Implementation phase:

Apply coding and testing standards
Apply security-testing tools including fuzzy logic
Apply static analysis code scanning tools
Conduct code reviews

Source: Steve Lipner, Michael Howard, ‘The Trustworthy
Computing Security Development Lifecycle’, Microsoft 2005



Summary

Security vulnerabilities are an industry-wide problem
Microsoft isn’t the only target today anymore
Every error could be security relevant when it
happens in security software!
Proactive actions (e.g. automated and manual code
reviews, rewriting of code) has to be considered
Implement several layers of security (“Sandbox”)
Responsible way of updating: “Update often, update
early, not too often and not too early”



Any questions?

Are there any questions?


	Insecurity in Security Software
	Table of content
	The paradox
	Types of security software
	CVE advisories for vendor products(2001 quarterly average = 100, Source: © The Yankee Group)
	Bugs leading to security vulnerabilities
	Bugs vs. security vulnerabilities
	Why bugs occur: 3 main factors
	Vulnerability lifecycle
	What to do? (I)
	What to do? (II)
	Trustworthy computing security development lifecycle (I)
	Trustworthy computing security development lifecycle (II)
	Trustworthy computing security development lifecycle (III)
	Summary
	Any questions?

